
On the electron energy loss spectra of small particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 7925

(http://iopscience.iop.org/0953-8984/2/39/007)

Download details:

IP Address: 171.66.16.151

The article was downloaded on 11/05/2010 at 06:54

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 2 (1990) 7925-7932. Printed in the UK 

On the electron energy loss spectra of small particles 
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Abstract. Electron energy loss spectroscopy experiments have very recently con- 
firmed that a t  clean planar metallic surfaces, the smooth decay of the ground-state 
electronic density induces additional surface modes above the classical one tending to 
w p / f i  for q + 0 (in the non-retarded regime). It is shown here that similar niodes- 
i.e. induced by surface diffuseness, should also be observable in the electron energy 
loss spectra of small particles of free-electron-like metals. More precisely, these spec- 
tra show an additional maximum above the classical modes of a sphere-which are 
given by wp/d-, I = 1, .  . . , w-and below up. This maximum is due to the 
superposition of the contributions of the aforementioned additional modes. Recent 
experimental reports of the electron energy loss spectra of potassium small particles, 
showing anomalous modes, can be understood from this point of view. 

1. Introduction 

Very recently, electron energy loss spectroscopy (EELS) studies of plane metallic sur- 
faces, carried out by Tsuei e t  al [l], have unambiguously confirmed that these systems 
can sustain multipole surface plasmons in addition to the ‘classical’ surface mode 
predicted by Ritchie [a] in 1957. Ritchie predicted this mode applying the hydrody- 
namic model to  a semi-infinite metal in which the electronic ground-state density falls 
abruptly to  zero at  the metal/vacuum interface. It was experimentally observed three 
years later [3]. Thereafter, hydrodynamic models taking into account the smooth de- 
cay of the ground-state electronic density a t  the surface predicted the aforementioned 
additional modes. For instance, it was shown that the poles of the surface optical 
absorption density are given by the retarded surface plasmon dispersion relations [4, 
51, thus giving an interpretation of the photoemission spectra from A1 [GI. Intuitively, 
one can understand the existence of these modes as follows. In an homogeneous sys- 
tem, the natural oscillation frequency is determined by the density. Since the latter 
is constant in such a system, there will be a single relevant eigenfrequency in play. In 
an inhomogeneous system, different parts of the system have different densities and, 
thus, will tend to oscillate with different frequencies. These oscillations will interfere 
destructively in general, but it may happen that a t  certain frequencies, depending on 
the spatial extension of the inhomogeneous region and the density gradient, they in- 
terfere constructively. This would give rise to new collective oscillations, more or less 
localized in the region of inhomogeneity. (One can guess that this may happen only 
if the system considered is not too inhomogeneous, i.e. it should present a minimum 
residual symmetry allowing a well defined extended collective behaviour.) 
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The hydrodynamic model has also been used to study the optical properties of 
small particles [7, 81. In [8], the gradual decay of the ground-state electronic density 
was taken into account. This led, in the dipole approximation, to  an additional surface 
mode at a frequency below the bulk mode wp and above the Mie mode w P / d .  Unfor- 
tunately, the relevant experimental results, demonstrating or ruling out the existence 
of such a mode, are not readily available. Experiments have often been mainly aimed 
at  measuring the red (or blue) shift of the Mie mode [SI, and there are very few reports 
of the optical absorption spectra ranging from the Mie mode up to wp. On the other 
hand, experiments on these systems are very delicate since the results can be very 
sensitive to  impurities. It is well known that thin overlayers on surfaces give rise to 
interface modes, which should not be confused with the clean surface ones. (Similar 
problems may occur in the plane surface case.) From the theoretical point of view, 
one can point out the time-dependent density functional results of Eckardt [lo] for the 
photoabsorption of small particles. One can see in those results a systematic, more or 
less broad, maximum above the Mie mode which has not been explicitly identified by 
their author. For instance, in figures 4 and 5 of the first paper in [lo], this maximum is 
situated between 1.2 and 1.4 w:'(where w:' = wP/&). This feature can be interpreted 
as the additional dipolar mode masked by single-particle-hole excitations. 

Given the above context, we find most interesting the recent EELS results of vom 
Felde et a1 [ll] on small metallic particles, showing anomalous modes above the clas- 
sical surface modes of a sphere. In this paper we report our calculations of the EELS 
spectra of small metallic particles with different radii and for various momentum trans- 
fers, showing that those experimental results can be understood in terms of additional 
surface modes. In section 2, a brief description of the model and the method of calcu- 
lation is given. Section 3 presents the main results together with a discussion of the 
conclusions that can be drawn from them. 

2. Model and energy loss probability 

In the present work, we take a small 'jellium' sphere as a model of a small particle, 
and describe the electron gas within the hydrodynamic approximation given by 

where no represents the ground-state electron density (normalized), wp is the (bulk) 
plasma frequency, ,02 = 3v:/5 (uF is the Fermi velocity) and y is a phenomenological 
damping factor. E ,  j and Q are induced fields, and Eext is a perturbing external 
field (for an account of the hydrodynamic approach see, e.g. [12]). While this does 
not define the most general hydrodynamic approach (for more general formulations, 
see [13]), its predictions are qualitatively the same as those of the more general ones 
(namely, the existence of additional modes induced by surface diffuseness). In the 
non-retarded case, the system will be completely determined (modulo the boundary 
conditions) by coupling the above equation with the continuity and the Poisson equa- 
tions. Following Fujimoto and Komaki [14], we take the sphere centred at the origin 
and consider an impinging electron following a trajectory given by r0 ( t )  = ( p o , v t ) ,  
where v is the electron velocity and po the impact parameter. Hence, the external 
charge density is given by 

Qext(T, P o ; t )  = ---e@ - PO)h(Z - v t )  (2) 
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(T = (p ,  2)) and the external potential can formally be written as 

It is readily shown that the work done by the electron in going from t -+ -CO to 
t --f +CO, given by [14] 

$00 

W(P0) = -e J dt ~E*(rO(t),PO; t )  (4) 
-00 

can be written 

where 4 stands for the Fourier transform of the induced potential in the variables 
p, z and t .  Since the diameter of the impinging beam of electrons is actually much 
bigger than that of the particles themselves, we integrate W over po to  obtain the 
total work Wtota,. The total energy loss E is given by the real part of Wtota,, and can 
be expressed as [15] 

where P ( q ,  U )  = -(e/4a3wh) Im$(q,w/w, - q ; w )  gives the probability of the electron 
losing an energy hw and changing its momentum by hq. 

Given a sphere of radius R, the ‘surface region’ is comprised within an interval 
R’ < r R, where R - R’ can be of the order of several A for alkali metals [16]. For 
r _< R’, we take no(.) = 1, and for r > R’, no is a smooth function decaying to  zero 
at R. In the homogeneous region, the problem has been solved by Tran Thoai and 
Zeitler [17] and we shall not repeat the calculations here. In the surface region, the 
problem can be solved using the well known method of ‘variation of constants’ (see, e.g. 
Arnold [IS]). The formulation is rather straightforward, although the equations are 
space consuming. Let us just outline the procedure and give the results. In terms of 
the potential, the system is described by a fourth-order (spatial) differential equation 
(after having taken the Fourier transform in time). Expanding the fields in terms of 
spherical harmonics, we are left with the following equation for the radial part 

with the coefficients and inhomogeneous term given by 

4 
v3(r) = - 

r 
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where k 2 ( r )  = ( w 2  + iwy - no(r )wE) /p2 ,  the j ,  are the spherical Bessel functions and 
Q2 = q2 + w 2 / v 2 .  The final expression for the induced potential in terms of the 
spherical harmonics reads 4 ( ~ ,  p o ; w )  = Elm Y,,(B, cp) dtm(r, p o ; w ) ,  where 

In the above equation we have introduced the screening length k ,  = w,/p and the 
angles 8’ and cp‘ defined by Q = (q ,  U/.) = (Q,  B’ ,  p’). The G, are given by 

The $:, i = 1, . . ~ , 4, are four linearly independent solutions of the homogeneous radial 
differential equation. For r 5 RI, the analytic solutions are given by T I ,  r-(’+’), j ,  and 
hf’) [17] (the h f”  are the spherical Bessel functions of the third kind). For r > R’, 
the solutions are determined by performing a numerical integration of the differential 
equation starting with four linearly independent initial conditions a t  R’ (e.g. the ones 
determined by the values of the analytical solutions at R’). The Si’j are the matrix 
elements of the inverse of the ‘evolution’ matrix, U‘ ,  whose columns are given by the 
four vectors ( j i ( r ) ,  d j f ( r ) /d r ,d ’~ f ( r ) /d r” ,  d3$1(r)/dr3), i = 1, .  . . , 4 .  The amplitudes 
a, and b, are determined by the boundary conditions at  r = R. These are given by 
the continuity of Ell , D ,  and j,. For I fixed, the third unknown in the linear system 
defined by the above conditions is the amplitude of the corresponding term of the 
potential outside the sphere, i.e. c ’ / T ( ’ + ~ ) .  It should be noted that ,  in order to  arrive 
to  the expression in ( lo) ,  we have used, a t  r = R’, the continuity of the same fields as 
above plus the continuity of p/kp [18]. 

3. Results and comments 

Our caiculations were performed for an electron gas with a density corresponding to 
that of potassium, i.e. r, = 4.86 a o ,  and for a surface diffuseness given by R- R‘ = 6 A. 
(According to  the local density functional results for no of Lang and Kohn [16], for low- 
density metals, the electron ‘spill’ outside the ion background tends to  be relatively 
large.) On the other hand, in the experiments reported by vom Felde et a /  the small 
particles are in a MgO matrix. Since this seems to  cause the electrons to be compressed 
against the ion background [ll], we have taken a rapidly decaying function to  describe 
the ground-state electron density a t  the surface, namely n o ( r )  = exp[-(r - R’)’], for 
r > R’. This gives a more rapid decay than in the ‘free’ surface results found in, 
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e.g. the work of Lang and Kohn for a plane surface [16] or that  of Ekardt for small 
particles [20]. From previous studies of the hydrodynamic model [5, 8, 211, we know 
that it is the extension of the surface region which essentially determines the number 
of additional modes, while the exact eigenfrequencies are more sensitive t o  the rapidity 
of the decay of no. A more rapid decay shifts the modes more towards the red. In 
next paragraph we start  the description of our results, but let us just say here that 
the behaviour of our spectra with varying radius and momentum transfer, which is 
what we concentrate on in this work, does not depend on the precise form of no. 
(This is important since in experiments one does not have perfect particles and the 
profiles probably change somewhat from one to  another.) Following vom Felde et a1 
we have also taken cM = 3 as the dielectric function of the matrix. With regard to  
the damping factor y ,  we recall that ,  in small particles, size effects alter considerably 
the value of the damping with respect to  its value in the bulk. I t  is known that this 
effect can be approximately be accounted for, in the plasma frequency range, by taking 
y = yo + wF/R [22], where yo is the inverse lifetime in the extended metal, w F  the 
Fermi velocity and R the particle radius. In the case of potassium, a bona fide value 
for yo is 0 . 0 4 ~ ~ .  (This is a more realistic value than the one given by DC conductivity 
results, which is an order of magnitude lower. For a discussion on this point, see [23].) 

In figure 1, we can see the energy-loss spectra (i.e. the energy-loss probability 
as a function of frequency) of potassium particles for three different radii and for a 
momentum transfer given by y = 0.2 A-'. The loss probabilities P(q,  U )  were divided 
by the particle volume and normalized to  the loss probability a t  6 eV. The radii are 
given in A. Reasonable convergence was achieved by considering the contributions 
of the the l-modes up to  I = 15. In each curve, the maximum below 2 eV is due 
to  a superposition of the regular, or classical, surface modes of a sphere. The  loss 
due to  these modes diminishes in importance with increasing radius. 'The second 
maximum is due to the additional modes induced by surface diffuseness. Relative 
t o  the first maximum, i t  shows a higher contribution with increasing radius. The 
third mode, above 4 eV, is due t o  the bulk plasmon excitation. The relative intensity 
corresponding to  this mode diminishes strongly with decreasing radius, and gives the 
dominant loss a t  large R, as one would expect. The slight red shift with increasing 
radius arises because in these systems, the bulk mode is not completely decoupled 
from the surface. With increasing radius, the 'bulk' mode relaxes towards its value 
for an infinite system. 

In figure 2, we give the energy loss spectra of a particle with a radius of 20 A 
for various values of the change in the parallel component y of the wave-vector of the 
scattered beam (with y given in A-'). The loss probabilities are divided by the sphere 
volume and normalized to  the loss a t  6.5 eV. The main features are the following. 
For low momentum transfer, the dominant loss is due to  the regular surface modes, 
while for large y, the loss is mainly due to  the bulk plasmon excitation. Moreover, 
the losses are more important for smaller y. The loss due to  the regular modes is 
strongly supressed with increasing momentum transfer and shows small dispersion. 
The additional maximum is less suppressed with increasing q values and shows an 
important dispersion. This is because for higher momentum transfer, higher 1 modes 
become increasingly important, and so do their corresponding additional modes. (vom 
Felde et a1 arrive a t  a similar conclusion in their theoretical analysis, with the difference 
that they attribute the maximum we are considering to  the classical modes of a sphere 
[ l l ] . )  The loss intensity corresponding to  the bulk mode increases with momentum 
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Figure 1. Energy-loss spectra of small potas- 
sium particles for three different values of the ra- 
dius R (given in A).  The maxima near 1.7 eV 
are due to a superposition of the classical surface 
modes of a sphere. The modes induced by surface 
diffuseness give rise to the loss maxima around 
3.2 eV. The bulk plasmon excitatioii causes the 
loss above 4 eV. 

q = 0.5 

q = 0.4 

q = 0.3 

q = 0.2 

3 1 2 3 4 5 6 7  

FREQUENCY (eV) 

Figure 2. Energy-loss spectra for a potassium 
partide particle 20 A in radius. The different 
curves are labelled by the change in the paral- 
lel component, q (in A-'), of the incident wave- 
vector. The losses due to the classical, addi- 
tional and bulk modes are clearly distinguish- 
able. At low momentum transfer, the classical 
modes dominate, while the bulk mode dominates 
for high q va1u.s. 

transfer up to q 2c 0.3A-', and then starts to diminish. 
To show explicitly how the classical modes and the additional modes give rise to 

the structure of the EELS spectra in figures 1 and 2 ,  we have performed a calculation 
of the energy loss taking y = 0.004wp,  i.e. a very low inverse lifetime. In figure 3 we 
show the contributions of the first five l-modes, for a particle with a radius of 20 A 
and for a momentum transfer corresponding to  q = 0.2A-l .  For comparison, the 
dotted line shows the corresponding result from figure 1 (for clearness, it has been 
displaced from the frequency axis by an arbitrary constant). One can clearly see that 
the classical and additional /-modes give rise, by superposition, to  the two maxima 
below up in the EELS spectra. (The maximum corresponding to 1 = 1 in the region of 
the classical modes is too small to be perceived.) 

Let us compare now our results with the experimental curves of [ll]. As in our 
results, the curves for particles of different radii, show the loss due to the classical 
modes centered around 1.7 eV. An important difference is that ,  what we think is the 
loss due to the additional mode appears around 2.5 eV (cf figure 1 of [ll]), whereas 
in our results this loss is situated above 3 eV. This is explained by the fact t ha t ,  in 
our treatment, the last term in (1) is a very simplified form of a quantity that should 
contain the spatial variation of the Fermi velocity, exchange, correlation and other 
effects. In the case of a plane surface, it has been shown [5] that a more consistent 
choice for this term pushes the additional surface plasmon to  lower frequencies, yielding 
values that are in good agreement with the results of Dobson and Harris [24] and of 
Tsuei e t  a l  [l]. On the other hand, we cannot really understand why the experimental 
result for the R = 40 A particle does not show the additional mode. Higher resolution 
measurements could possibly confirm its presence. With regard to the bulk mode, 
we see that the theoretical value lies a t  higher frequencies than in the experimental 



On the electron energy loss spectra of small particles 793 1 

FREQUENCY (eV) 

Figure 3. Contributions of the f i s t  five I-modes to the EELS spectrum using a very 
large value for the relaxation time (y = 0 . 0 0 4 ~ ~ )  for the R = 20 A K particle and 
for q = 0 . 2 A - I .  For comparison, the dotted curve gives the corresponding result 
from figure 1. By superposition, these modes give rise to the structure observed in 
the EELS spectra in figures 1 and 2.  (The classical I = 1 mode, too small to be seen, 
is situated at  w E 1.5eV.l 

curves. This is because we are using a free-electron model, and, again, exchange and 
correlation effects can be important in potassium due to its low density [l]. 

If we consider the results in [ll] for different momentum transfers (cf figure 2), we 
see that the agreement with our calculations is very satisfying. In a calculation giving 
a better description of the internal kinetic energy of the electrons and further effects, 
the agreement would be even better since, as we explained above, the additional modes 
would be shifted towards the classical modes. Our curves do not show any structure 
around 6 eV because we have not included multiple-scattering effects in our model 
(the same comment is valid for our results in figure 1). 

I t  would be very interesting to  see further results on this subject, both from the 
experimental and theoretical points of view. One should bear in mind that  the hy- 
drodynamic approach is more qualitative than quantitative. Time-dependent density 
functional calculations for particles with radii higher than 10 A-which are closer to  
spherical particles and in which spherical modes are probably better defined-would 
be necessary to  give a more solid grounding to  the above interpretation. The ques- 
tion raised here, is interesting not only on its own right, but on other grounds as 
well. For instance, if the existence of the additional modes in the spherical systems 
is confirmed, it could shed some light on some experimental results by Burtscher and 
Schmidt-Ott which appeared in 1982 [25]. Those workers reported a strongly enhanced 
van der Waals interaction among small metallic particles. To our knowledge, these 
results were never confirmed nor rejected. In the case of two plane surfaces, using 
the Casimir expression for the van der Waals interaction (i.e. in terms of the electro- 
magnetic eigenmodes of the system [26]), i t  has been shown [5] that the additional 
mode can cause at  least a four-fold enhancement of the attraction (the enhancement 
increases with decreasing distance between the planes). While this enhancement is 
not as extraordinary as that reported in [ 2 5 ] ,  it points in the correct direction. On 
the other hand, the enhancement could be more important in the case of particles, 
because spheres bear not only one additional mode, but one for each value of 1. These 
modes, moreover, should have important consequences on the optical properties of 
the systems we are considering, as has been shown in [8]. All these considerations, 
we think, show that the subject of surface modes of small particles is still open and 
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presents interesting problems to the theories of the inhomogeneous electron gas 
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